Kingst VIS Analyzer SDK www.qgdkingst.com

<)
Kingst

KingstVIS Analyzer Developer Guide

Qingdao Kingst Electronics Co., Ltd

Website: www.qdkingst.com

E-mail: service@qdkingst.com

1 2020-5-19

http://www.qdkingst.com
http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

II.

Contents

Setting up an Analyzer Project......ccccuumeeriiccissscccnnesnrencssssssnnssssenccssssssssssssses 3

1. GeNEral dESCIIPTION. c...ciiiiiiititieee ettt ettt ettt e st e bt e bt e e beesaneenaee 3
2. SEttING UP PrOJECE....uviiiiiiiiiiiiiiie et 3
2.1 WINAOWS. ..ttt ettt e e et e et e e et e e e et e e e e s e e nne e eeanees 3
2.2 LINUX. ettt ettt ettt e e e ettt e e e e et et e e et e e e e e e e e e r et e e e e e e e a et e e e e e aanrreeeeeeeeaarnnee 6
0 1 = T oSO 7

Writing your Analyzer’s COe......uiiinnnnrricsssnnnccsssnnnncssssssnesssssssssssssssssssssssnees 8

L. ANAIYZEE SETEINES ..ttt ettt e e e e eeanees 8
1.1 {YourNameJANalyzerSettings.N.....ccouiiiiiiiiii e 8
1.2 {YOUrName ANalyzerSettiNgS.CPP . ceueeetteeiieeriieeiie ettt ettt ettt ettt esaae e 11
2. SIMUIQtiONDATAGENEIALONcuiieiiieiie ettt ettt e e e 19
2.1 {YourName}SimulationDataGenerator.N.........cccocuviiieiiiii i 19
2.2 {YourName]}SimulationDataGeNerator.CPP. ... ccoueerurerurerieeniieeniieeeeeeie et eiee s e saeenaee 21
3L ANAIYZEIRESUIES. ...ttt et ettt et sbe e e e e 28
3.1 {YourName}ANalyzerRESUITS.oo it e e 28
3.2 {YOUrName}ANalyzZerRESUITS.CPP . couverrrereritenteeieniteste ettt ettt ettt sne s sre e 29
A ANAIYZET ettt h e e h e e bttt e e e bt e bt e e bt e e aeenaee 37
4.1 {YOUIrNAMEIANGIYZEI. Nttt ettt e et e e et e e e ba e e s sbaeeensaeeennsaaeenns 37
4.2 {YOUrN@MEJANGIYZEI.CPP -+t euverteenrieirenieete ettt ettt ettt ettt et e sb et sttt s sbe e et senenreen 39

2 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

I. Setting up an Analyzer Project
1. General description

The KingstVIS supports custom protocol analyzers, using C++ for development.

This document is divided into two parts. The first part is the steps of setting up a custom analyzer
project, and introduces how to generate dynamic link library file of the analyzer on Windows, Linux and
Mac OS. The second part is how to write analyzer code, introduce the usage of basic class and its

member functions.

2. Setting up project

Before starting the next step, you should make sure that you have KingstVIS_Analyzer_SDK provided by

us.

There are inc, lib folders and the sample SerialAnalyzer in the root of KingstVIS_Analyzer_SDK folder.
Base class header file is stored in the inc folder. There are four subfolders of Win32, Winé4, Linux and
Mac in the lib folder, The 32-bit and 64-bit Analizer.lib and Analyzer.dll are stored in the Win32 and
Win64 folders. libAnalyzer.so is stored in Linux. libAnalyzer.dylib is stored in Mac. In the SerialAnalyzer
folder, the project file and source code of UART are stored, and there are four subfolders: src, vs2013,
Linux and Mac. The source code for the Analyzer in the src folder. The project file builded by VS2013 is
stored in the vs2013 folder, you can use the project file in Windows to generate the analyzer .dll file. In
Linux, you can use makefile file to generate the .so file, which stored in the Linux folder. In Mac, you can

use makefile generate the .dylib file, which stored in the Mac folder.

2.1 Windows

1. Take the example of generating .dll file which use to analyze the SPI protocol, you can modify the
project file to get the SPI analyzer from the sample SerialAnalyzer. If you want to keep the sample, you
can copy it in the same directory, and then modify it on the SerialAnalyzer-copy.

inc

lib

SerialAnalyzer

SerialAnalyzer-copy

Fig.1

2. Refer to the sample, change the name of the folder to SpiAnalyzer. Open this folder and replace the
source file in the src folder with the source file used to analyze SPI. The creation of the specific source
file will be explained in the next chapter. Open vs2013 Folder, modify the file name to

SiAnalyzer.vexproj.

3 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

£ SpiAnalyzer.vexproj
Fig.2
3. Use Visual Studio 2013 (or later) to open the project file SpiAnalyzer.vcxproj. If the file type in the
open dialog box does not have *.vcxproj and cannot open the project, because your Visual Studio does

not have VC++ components. Please run the Visual Studio Installer again to add VC++ components.

All Project Files (*.sln;*.dsw;*. V|

All Project Files (*.sln;*.dsw;*vew;* csproj:*wbproj:*.rptproj* shproj:*.dwproj;*.asproj*.exe: "vexproj; *veproj; *
Solution Files (*.sln)

Compatible Workspace Files (*.dsw,*vow)

C# Project Files (*.csproj)

VE Project Files (*vbproj)

EEEE (" rptpraj)

Shared Prajects (*.shproj)

Analysis Services EFIEEEFENE4(*. dwproj;*.asproj)

Exe Project Files (*.exe)

VC++ Project files (*vexproj; *weproj; *.dsp; “.mdp; *".props; *.vep; *voxitems)
ASP.NET 5 Project Files (*.xproj)

Tabular Project Files (*.smpraj)

Fig.3

After opening the project file, remove all the original .cpp and .h files.

fal Solution 'SpiAnalyzer' (1 project)
4 [&] spiAnalyzer
=B References

= External Dependencies

b

4

b o3 Spifnalyzer.cpp

b [@) SpiAnalyzerh

b 5 SpifnalyzerResults.cpp
b e S
b

3

b

b

Open With...
| <> View Code
#3 View Class Diagram

Compile Ctrl+F7
New Solution Explorer View

Exclude From Project

¥ cut Ctrl+X
! Copy Ctrl+C
X Remaove Del
Rename
A Properties Alt+Enter
Fig.4

4. Right click on the project name, choose Add -> Existing Item as shown in Figure 5. Open src folder,

select all .cpp and .h files you need to add, and add them.

4 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

fa] Solution 'SpiAnalyzer' (1 project)

4 [i7Y SpiAnates
b =B Ref by Build
= Ext| Rebuild
Clean
View v
Analyze »
Project Only »

Upgrade VC++ Compiler and Libraries
Scope to This

New Solution Explorer View

Build Dependencies »

Add » | 49 New item.. Ctrl+Shift+A
g Class Wizard... Ctrl+Shift+X 9 Existing ltem... Shift+Alt+A
i Manage NuGet Packages... #= MNew Flter

£} Set as StartUp Project Reference...

Debug * | 2 Connected Service...
Source Control Y| % Class..
¥ cut Ctrl+X *s Resource..
Fig.5

I/ SpiAnalyzer.cpp

M SpiAnalyzer.h

I SpiAnalyzerResults.cpp

M SpiAnalyzerResults.h

I/ SpiAnalyzerSettings.cop

M SpiAnalyzerSettings.h

Iy SpiSimulationDataGenerator.cpp

M SpiSimulationDataGenerator.h

Fig.6

5. After completing the above steps, the project is set up. You can generate the required .dll file.
Generate 32-bit or 64-bit .d/l file in Release mode, depending on the OS you are using. The
generated .dll file name can be set in Visual Studio through the menu Project -> [project name]
Properties -> Configuration Properties -> General -> Target Name, as shown in Figure 7. If no change

is made, it will be the same as the project name. If you use a later version of Visual Studio, you also

need to modify the Platform Toolset.

5 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

SpiAnalyzer Property Pages

Configuration: | Debug ~ | Platform: |All Platforms ~ Configuration Manager...
4 Configuration Properties v General
General Target Platform Windows
Debugging Target Platform Version 81
VC++ Directories Output Directory $(SolutionDir) $(Configuration)\$(Platform)\
b C/CH+ Intermediate Directory $(SolutionDir)$(Configuration)\$(Platform)y
Gt P S | cjcctome)
b airatast Tool Target Extension il
b %ML Dosiment Gonarat Extlensicms .tD Delete on Clean ".cdf;".lcache;".Ui?j;*.ob{'.enc;".i|k;*.ipdb;*.icubj;".rescuurces;*.tlb;*.t\i;".t‘
o Browee [format on Build Log File ${IntDir)$(MSBuildProjectName).log
- Platform Toolset Visual Studio 2013 - Windows XP (v120 xp)
I> Build Events 2
i Enable Managed Incremental Build MNo
I Custom BL.II|E.1 Step ~ Project Defaults
L ade Al Configuration Type Dynamic Library (dIl)
Use of MFC Use Standard Windows Libraries
Character Set Use Multi-Byte Character Set
Common Language Runtime Support Mo Commeon Language Runtime Support
.NET Target Framework Version
Whole Program Optimization Mo Whole Program Optimization
Windows Store App Support Ne
Target Name
Specifies a file name that this project will generate.
£ >

B HEFA(A)

Fig.7
When generating 32-bit file, it should be configured as Release + Win32, as shown in Figure 8.

When generating 64-bit file, it should be configured as Release + x64, as shown in Figure 9.

|Release ~| Win32 -1
Fig.8

\Release -| x64 -1
Fig.9

6. The generated 32-bit .d/l file is located in the "\Release\Win32\" directory and the 64-bit file is
located in the "\Release\x64\".

7. Copy the .dll file to the Analyzer directory of the KingstVIS installation directory. Restart the KingstVIS,

and your custom analyzer will appear in the analyzer list.

2.2 Linux

1. Take the example of generating .so file which use to analyze the SPI protocol. you can modify the
project file to get the SPI analyzer from the sample SerialAnalyzer. If you want to keep the sample, you

can copy it in the same directory, and then modify it on the copied folder.

2. Refer to the sample, change the name of the folder to SpiAnalyzer. Open this folder and replace the
source file in the src folder with the source file used to analyze SPI. The creation of the specific source

file will be explained in the next chapter. Open Linux Folder, open the makefile, and change libSerial.so

6 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

to the name you want, here to /ibSPl.so.

3. Open the terminal and go to the Linux directory, enter the command-"make", and the libSPI.so file

will be generated in the current directory.

4. Copy the libSPl.so file to the Analyzer directory of the KingstVIS installation directory. Restart the

KingstVIS, and your custom analyzer will appear in the analyzer list.

2.3 Mac

1. Take the example of generating .so file which use to analyze the SPI protocol. you can modify the
project file to get the SPI analyzer from the sample SerialAnalyzer. If you want to keep the sample, you

can copy it in the same directory, and then modify it on the copied folder.

2. Refer to the sample, change the name of the folder to SpiAnalyzer. Open this folder and replace the
source file in the src folder with the source file used to analyze SPI. The creation of the specific source
file will be explained in the next chapter. Open Linux Folder, open the makefile, and change

libSerial.dylib to the name you want, here to libSPI.dylib.

3. Open the terminal and go to the Linux directory, enter the command-"make", and the libSPl.dylib file

will be generated in the current directory.

4. Copy the libSPI.dylib file to the Contents/Resources/Analyzer/ directory of the KingstVIS package

directory. Restart the KingstVIS, and your custom analyzer will appear in the analyzer list.

5. It may happen that the generated .dylib file cannot be loaded because the dependent library cannot
be found. You can use the following command to modify the dependent library path.

install_name_tool -change "libAnalyzer.dylib" "@executable_path/libAnalyzer.dylib" "1ibSPI.dylib"

7 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

II. Writing your Analyzer’s Code

There are 4 .cpp and 4 .h files that you will implement to create your analyzer. You can modify the

source files of the samples in the SDK package to simplify the operation.

Conceptually, the analyzer can be broken into 4 main parts — the 4 c++ files. Working on them in a

particular order is highly recommended, and this document describes the procedure in this order.

First you’ll work on the AnalyzerSettings-derived class. You'll define the settings your analyzer needs,
and create interfaces that’ll allow the KingstVIS to display a GUI for the settings. You'll also implement

serialization for these settings so they can be saved and recalled from disk.

Next you implement the SimulationDataGenerator class. Here you’ll generate simulated data that can

be later to test your analyzer, or provide an example of what your analyzer expects.

Third you’ll create your AnalyzerResults-derived class. This class translates saved results into text for a
variety of uses. Here you’ll start thinking about the format your results will be saved in. You probably

will revisit your file after implementing your analyzer.

Lastly, you'll implement your Analyzer-derived class. The main thing you’ll do here is translate data

streams into results, based on your protocol.
Let’s get started!

To write Serial protocol (such as UART) analyzer, for example, first create 4 .cpp and 4 .h files. The
four .cpp files are SerialAnalyzer.cpp, SerialAnalyzerResults.cpp, SerialAnalyzerSettings.cpp,
SerialSimulationDataGenerator.cpp, the four .h files are SerialAnalyzer.h, SerialAnalyzerResults.h,
SerialAnalyzerSettings.h, SerialSimulationDataGenerator.h. Let these files be empty first, and then
implement them one by one later. When writing your own analyzer, it is also recommended to create

the file according to this naming method.

1. Analyzer Settings

Add the created 4 .cpp files and 4 .h files to the created project, so that a project on the analyzer is

completed, and the next step is to complete the 8 empty files one by one.

1.1 {YourName}AnalyzerSettings.h

The first thing to implement is a derived class of the Analyzer Settings class. The code to implement this
derived class is written in SerialAnalyzerSettings.cpp and SerialAnalyzerSettings.h, the name of this
derived class could be named SerialAnalyzerSettings, This class must inherit from AnalyzerSettings, and

should include the AnalyzerSettings.h header file.

The code of SerialAnalyzerSettings.h shown as follows:

8 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

#ifndef SERIAL_ANALYZER_SETTINGS
#define SERIAL_ANALYZER_SETTINGS

#include <AnalyzerSettings.h>

class SerialAnalyzerSettings : public AnalyzerSettings

{
public:
SerialAnalyzerSettings();

virtual ~SerialAnalyzerSettings();

virtual bool SetSettingsFromInterfaces();
void UpdateInterfacesFromSettings();
virtual void LoadSettings(const char *settings);

virtual const char *SaveSettings();

}s

#endif //SERIAL_ANALYZER_SETTINGS

In addition, your header will define two sets of variables:

1.1.1 User-modifiable settings

This will always include at least one variable of the type Channel — so the user can specify which input
channel to use. This cannot be hard coded, and must be exposed as a setting. (Channel isn’t just an
index, it also specifies which Logic device the channel is from). Other possible settings depend on your
protocol, and might include:

e Bitrate

° Bits per transfer

. Bit ordering (MSB first, LSB first)

® Clock edge (rising, falling) to use

° Enable line polarity

The variable types can be whatever you like - std::string, double, int, enum, etc. Note that these
variables will need to be serialized (saved for later, to a file) so when in doubt, stick to simple types

(rather than custom classes or structs). The SDK provides a means to serialize and store your variables.

The setting variables added to the SerialAnalyserSettings class are as follows:

Channel mInputChannel;

U32 mBitRate;

U32 mBitsPerTransfer;

AnalyzerEnums: :ShiftOrder mShiftOrder;
double mStopBits;

AnalyzerEnums: :Parity mParity;

bool mInverted;

9 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

bool mUseAutobaud;

SerialAnalyzerEnums: :Mode mSerialMode;

1.1.2 Analyzer Settings Interfaces
One of the services the Analyzer SDK provides is a means for users to edit your settings, with a GUI,
with minimal work on your part. To make this possible, each of your settings variables must have a

corresponding interface object. Here are the avalible AnalyzerSettingsinterface types:
® AnalyzerSettinglnterfaceChannelData: Used exclusivly for input channel selection.
Data 0-'Channel0' ~

® AnalyzerSettinglnterfaceNumberList: Used to provide a list of numerical options for the user to
choose from. Note that this can be used to select from several enum types as well, as illustrated

below. (Each dropdown below is implemented with its own interface object)

8 Bits per Transfer (Standard) ~

[1 Stop Bit (Standard) |

No Parity Bit (Standard) ~
Least Significant Bit Sent First (Standard) ~

Special Mode | MNone =

® AnalyzerSettinglnterfacelnteger: Allows a user to type an integer into a box.

Bit Rate (Bits/s) [9600

® AnalyzerSettingInterfaceText: Allows a user to enter some text into a textbox.
® AnalyzerSettinglnterfaceBool: Provides the user with a checkbox.
[use Autobaud
[1nverted (RS232)
AnalyzerSettingsinterface types should be declared as pointers. (We're using the std::auto_ptrtype,
which largly acts like a standard (raw) pointer. It’s a simple form of what’s called a “smart pointer” and

it automaticly calls deleteon its contents when it goes out of scope.)

For Serial, the GUI setting interface we want to implement is shown in the following figure.

Data 0-'Channel 0" ~

Bit Rate (Bits/s) |9600 |
[use Autohaud
[tnverted (RS232)

8 Bits per Transfer (Standard) -

[1 stop Bit (Standard) ~ |

No Parity Bit (Standard) -
Least Significant Bit Sent First (Standard) -

Special Mode | None >

10 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK

www.qgdkingst.com

So you should add the following code to the SerialAnalyserSettings class:

std:
std:
std:
std:
std:
std:
std:
std:
std:

tauto_ptr<
rauto_ptr<
tauto_ptr<
tauto_ptr<
rauto_ptr<
tauto_ptr<
tauto_ptr<
rauto_ptr<

tauto_ptr<

AnalyzerSettingInterfaceChannel > mInputChannelInterface;

AnalyzerSettingInterfaceInteger > mBitRateInterface;

AnalyzerSettingInterfaceBool > mInvertedInterface;

AnalyzerSettingInterfaceBool > mUseAutobaudInterface;

AnalyzerSettingInterfaceNumberList
AnalyzerSettingInterfaceNumberlList
AnalyzerSettingInterfaceNumberlList
AnalyzerSettingInterfaceNumberList

AnalyzerSettingInterfaceNumberlList

1.2 {YourName}AnalyzerSettings.cpp

>

>

>

>

>

mBitsPerTransferInterface;
mShiftOrderInterface;
mStopBitsInterface;
mParityInterface;

mSerialModeInterface;

After completing the contents of the SerialAnalyserSettings.h file, you need to complete the

SerialAnalyserSettings.cpp file, which is to implement the constructors, destructors, etc. in the

SerialAnalyserSettings class.

1.2.1 The Constructor

First of all, we need to complete the compilation of the constructor. In the constructor, we need to

initialize the variable. For the SerialAnalyzer, the code for initializing the variable is written as follows:

SerialAnalyzerSettings::SerialAnalyzerSettings()

mInputChannel(UNDEFINED_CHANNEL),

mBitRate(9600),

mBitsPerTransfer(8),

mStopBits(1.0),

mParity(AnalyzerEnums: :None),

mShiftOrder(AnalyzerEnums::LsbFirst),

mInverted(false),

mUseAutobaud(false),

mSerialMode(SerialAnalyzerEnums: :Normal)

{
¥

After initializing the variable, the reset function is called to complete the creation of the interface.

AnalyzerSettinginterfaceChannelData

mInputChannelInterface.reset(new AnalyzerSettingInterfaceChannel());

Next, we call the SetTitleAndTooltip function. The title will appear to the left of the input element. Note

that often times you won’t need a title, but you should use one for Channels. The tooltip shows up

when hovering over the input element.

void SetTitleAndTooltip(const char* title, const char* tooltip)

For example, for the serial channel setting interface, the following settings can be made.

mInputChannelInterface->SetTitleAndTooltip("Data", "Standard Async Serial");

The interface name is Data and the prompt message is Standard Async Serial

11

2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

Data 0-'Channel0’ ~
e — Standard Async Serial

Next, we use the SetChannel function to set the channel.

void SetChannel(const Channel& channel);

mInputChannelInterface->SetChannel(mInputChannel);
And we can use GetChannel function to get channel number.

Channel GetChannel();
Sometimes the channel can be set to None, means that it can not be connected to one channel of the
logic analyzer. This situation will only occurs under multiple channels, and an input channel must be set

when the protocol is single line.
For example, when parsing SPI protocol, set channel selection, as shown in the following figure.

MOSI |0 - 'Channel 0' -
MISO |1-'Channell' =~
Clock |2-'Channel2' =

Enable |None =

This means Enable may not be connected to the logic analyzer.

Whether the channel can be set to None needs to be set using the SetSelectionOfNonelsAllowed
function.

void SetSelectionOfNoneIsAllowed(bool is_allowed);
If is_allowed is true, the channel can be set to None, and if it is false, an input must be set. The default

is false, which means that each channel must have one input channel.

You can get whether the channel can be set to None using the getSelectionOfNonelSallowed function.

void SetSelectionOfNoneIsAllowed(bool is_allowed);

AnalyzerSettinginterfacelnteger
mBitRateInterface.reset(new AnalyzerSettingInterfacelInteger());
Use the SetTitleAndToolTip function to set the interface name and prompt information

mBitRateInterface->SetTitleAndTooltip(

"Bit Rate (Bits/s)", "Specify the bit rate in bits per second.");

Bit Rate (Bits/s) |9600
i Specify the bit rate in bits per second.

[T

This number to be entered must be an integer. You can set the range of input numbers using the
SetMax and SetMin functions.

void SetMax(int max);
void SetMin(int min);

mBitRateInterface->SetMax(100000000) ;

12 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

mBitRateInterface->SetMin(1);

With the above settings, the input data range is limited to an integer between 1 to 10000000.

Setting the input data can be achieved using SetInteger.

void SetInteger(int integer);

mBitRateInterface->SetInteger(mBitRate);
The input data can be obtained using GetInteger.

int GetInteger();

AnalyzerSettinginterfaceNumberlList
Explains the use of the Analyzer SettingInterfaceNumberList class with how to set parity in the
SerialAnalyzer.
mParityInterface.reset(new AnalyzerSettingInterfaceNumberList());
Then set the interface name and prompt information using the SetTitleAndToolTip function.

mParityInterface->SetTitleAndTooltip("", "Specify None, Even, or O0dd Parity.");

No Parity Bit (Standard) ~ |
S Specify None, Even, or Odd Parity.

| mzet Cianifirant Do

Add a selection to the interface drop-down list using the AddNumber function.

void AddNumber(double number, const char *str, const char *tooltip);
This function has three input parameters, number is associated with the selection and will not be
displayed to the user. str is the name of the selection and will appear in the list. tooltip is a prompt
message that will appear when the mouse hovers over the selection item.

mParityInterface->AddNumber(AnalyzerEnums: :None, "No Parity Bit (Standard)", "");
mParityInterface->AddNumber(AnalyzerEnums: :Even, "Even Parity Bit", "");

mParityInterface->AddNumber(AnalyzerEnums::0dd, "Odd Parity Bit", "");
When the selection item you want to set is selected in the list, the set number is saved using
SetNumber function.

mParityInterface->SetNumber(mParity);

No Parity Bit (Standard) =
g
Even Parity Bit
Odd Parity Bit

The value set by the SetNumber function can be obtained using the GetNumber function.

double GetNumber();

AnalyzerSettinginterfaceBool
Here is an example of setting whether the SerialAnalyzer enables the automatic baud rate to show how
to use the AnalyzerSettinginterfaceBool class, which is also to first create a pointer to the

AnalyzerSettinginterFacebool and call the reset function.

13 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

mUseAutobaudInterface.reset(new AnalyzerSettingInterfaceBool());

Set the interface name and prompt information.

mUseAutobaudInterface->SetTitleAndTooltip("", "Automatically find the minimum pulse width

and calculate the baud rate according to this pulse width.");

You can use the SetCheckBoxText function to give the selection box a name, and the name is displayed
on the right side of the selection box.

void SetCheckBoxText(const char* text);

mUseAutobaudInterface->SetCheckBoxText("Use Autobaud");

You can use the SetValue function to enable this radio box setting item.

void SetValue(bool value);

mUseAutobaudInterface->SetValue(mUseAutobaud);

[use Autobaud

The GetValue function can be used to obtain whether to enable the selection box setting item.

bool GetValue();

After creating our interfaces (with new), giving them a titles, settings their values, and specifying their
allowed options, we need to expose them to the API. We do that with function Addinterface.

void AddInterface(AnalyzerSettingInterface* analyzer_setting_interface);
The following parameters need to be passed.

AddInterface(mInputChannelInterface.get());
AddInterface(mBitRateInterface.get());
AddInterface(mUseAutobaudInterface.get());
AddInterface(mInvertedInterface.get());
AddInterface(mBitsPerTransferInterface.get());
AddInterface(mStopBitsInterface.get());
AddInterface(mParityInterface.get());
AddInterface(mShiftOrderInterface.get());
AddInterface(mSerialModeInterface.get());

Specifing the export options
Analyzers can offer more than one export type. For example txt or csv, or even a wav file or bitmap. If

these need special settings, they can be specified as analyzer variables/interfaces as we’ve discussed.

Export options are assigned an ID. Later, when your function for generating export data is called, this ID
will be provided. There are two functions you’ll need to call to specfiy an export type. Be sure to specify
at least one export type (tyically text/csv).

void AddExportOption(U32 user_id, const char *menu_text);

void AddExportExtension(U32 user_id, const char *extension_description, const char *extension);

user_id means a specify ID, extension_description means the output file’s type that we want, extension

14 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

means suffix.
AddExportOption(@, "Export as text/csv file");
AddExportExtension(@, "Text file", "txt");
AddExportExtension(@, "CSV file", "csv");

Edit

Dispiay Format »

Export Data Ls Text file (*.bd)
RIS CSV file (*.csv)

Specifying which channels are in use

The analyzer must indicate which channel(s) it is using. This is done with the AddChannel function.
Every time the channel changes (such as when the user changes the channel) the reported channel
must be updated. To clear any previous channels that have been set, call ClearChannels.

void ClearChannels();

void AddChannel(Channel &channel, const char *channel_label, bool is_used);
ClearChannels();

AddChannel(mInputChannel, CHANNEL_NAME, false);

Note that in the constructor, we have set is_used to false. This is because by defualt our channel is set

to UNDEFINED_CHANNEL. After the user has set the channel to something other that
UNDEFINED_CHANNEL, we would specify true. It would always be true, unless the channel was optional,
in which case you will need to examine the channel value, and specify false if the channel is set to
UNDEFINED_CHANNEL. We’'ll discuss this later as it comes up.

1.2.2 The Destructor
Generally you won’t need to do anything in your AnalyzerSettings-derived class’s destructor. However, if

you are using standard (raw) pointers for your settings interfaces, you’ll need to delete them here.

1.2.3 bool {YourName}AnalyzerSettings::SetSettingsFromInterfaces()
As the name implies, in this function we will copy the values saved in our interface objects to our

settings variables. This function will be called if the user updates the settings.

We can also examine the values saved in the interface (the user’s selections) and choose to reject
combinations we don’t want to allow. If you want to reject a particular selection, do not assign the
values in the interfaces to your settings variables — use temporary variables so you can choose not to
assign them at the last moment. To reject a user’s selections, return false; otherwise return true. If you
return false (reject the user’s settings), you also need to call SetErrorText to indicate why. This will be
presented to the user in a popup dialog.

void SetErrorText(const char *error_text);

For example, when using more than one channel, you would typically want to make sure that all the

15 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

channels are different. You can use the AnalyzerHelpers::DoChannelsOverlap function to make that

easier if you like.

For your analyzer, it’s quite possible that all possible user selections are valid. In that case you can

ignore the above.

After assigning the interface values to your settings variables, you also need to update the channel(s)
the analyzer will report as being used. Below is an example from SerialAnalyzerSettings.
bool SerialAnalyzerSettings::SetSettingsFromInterfaces()
{
if (AnalyzerEnums::Parity(U32(mParityInterface->GetNumber())) != AnalyzerEnums::None)
if (SerialAnalyzerEnums::Mode(U32(mSerialModeInterface->GetNumber())) !=
SerialAnalyzerEnums: :Normal) {
SetErrorText("Sorry, but we don't support using parity at the same time as MP mode.");
return false;
b
mInputChannel = mInputChannelInterface->GetChannel();
mBitRate = mBitRateInterface->GetInteger();
mBitsPerTransfer = U32(mBitsPerTransferInterface->GetNumber());
mStopBits = mStopBitsInterface->GetNumber();
mParity = AnalyzerEnums::Parity(U32(mParityInterface->GetNumber()));
mShiftOrder = AnalyzerEnums::ShiftOrder(U32(mShiftOrderInterface->GetNumber()));
mInverted = mInvertedInterface->GetValue();
mUseAutobaud = mUseAutobaudInterface->GetValue();

mSerialMode = SerialAnalyzerEnums::Mode(U32(mSerialModeInterface->GetNumber()));

ClearChannels();
AddChannel(mInputChannel, CHANNEL_NAME, true);

return true;

1.2.4 {YourName}AnalyzerSettings::UpdatelnterfacesFromSettings()
UpdatelnterfacesFromSettings goes in the opposite direction. In this function, update all your interfaces
with the values from your settings variables. Below is an example from SerialAnalyzerSettings.
void SerialAnalyzerSettings: :UpdateInterfacesFromSettings()
{
mInputChannelInterface->SetChannel(mInputChannel);
mBitRateInterface->SetInteger(mBitRate);
mBitsPerTransferInterface->SetNumber(mBitsPerTransfer);
mStopBitsInterface->SetNumber(mStopBits);
mParityInterface->SetNumber(mParity);
mShiftOrderInterface->SetNumber(mShiftOrder);

mInvertedInterface->SetValue(mInverted);

16 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK

www.qgdkingst.com

mUseAutobaudInterface->SetValue(mUseAutobaud);

mSerialModeInterface->SetNumber(mSerialMode);

1.2.5 void {YourName}AnalyzerSettings::LoadSettings(const char *settings)
In the last to functions of your AnalyzerSettings-derived class, you'll implement serialization

(persistence) of your settings. It’s pretty straightforward.

Your settings are saved in, and loaded from, a single string. You can technically serialize all of your

variables into a string anyway you like, including third part libraries like boost, but to keep things simple

we provided a mechanism to serialize your variables. We'll discuss that here.

First, you’ll need a SimpleArchive object. This will perform serialization for us. Use SetString to provide

the archive with our settings string. This string is passed in as a parameter to LoadSettings.

struct SimpleArchiveData;

class LOGICAPI SimpleArchive

{
public:

SimpleArchive();

~SimpleArchive();

void

SetString(const char *archive_string);

const char *GetString();

bool
bool
bool
bool
bool
bool
bool
bool

bool
bool
bool
bool
bool
bool
bool
bool

protected:

operator<<(U64 data);
operator<<(U32 data);
operator<<(S64 data);
operator<<(S32 data);
operator<<(double data);
operator<<(bool data);
operator<<(const char *data);

operator<<(Channel &data);

operator>>(U64 &data);
operator>>(U32 &data);
operator>>(S64 &data);
operator>>(S32 &data);
operator>>(double &data);
operator>>(bool &data);
operator>>(char const **data);

operator>>(Channel &data);

struct SimpleArchiveData *mData;

17

2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK

www.qgdkingst.com

b

Next we will use the archive to loaf all of our settings variables, using the overloaded >> operator.

Since our channel values may have changed, we will also need to update the channels we’re reporting

as using. We need to do this every times settings change.

Lastly, call UpdatelnterfacesFromSettings. This will update all our interfaces to reflect the newly loaded

values.

Below is an example from SerialAnalzerSettings.

void SerialAnalyzerSettings::LoadSettings(const char *settings)

{

SimpleArchive text_archive;

text_archive.SetString(settings);

const char *name_string;

text_archive >> &name_string;

if (strcmp(name_string, "SerialAnalyzer") != @)

AnalyzerHelpers::Assert("SerialAnalyzer: Provided with a settings string that doesn't

text_archive
text_archive
text_archive
text_archive
text_archive
text_archive

text_archive

>>

>>

>>

>>

>>

>>

>>

belong to us;");

mInputChannel;
mBitRate;
mBitsPerTransfer;
mStopBits;
(U32)&mParity;
(U32)&mShiftOrder;

mInverted;

bool use_autobaud;

if (text_archive >> use_autobaud)

mUseAutobaud = use_autobaud;

SerialAnalyzerEnums: :Mode mode;

if (text_archive >> *(U32*)&mode)

mSerialMode

ClearChannels();
AddChannel(mInputChannel, CHANNEL_NAME, true);

= mode;

UpdateInterfacesFromSettings();

18

2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

1.2.6 void {YourName}AnalyzerSettings::SaveSettings()

Our last function will save all of our settings variables into a single string. We'll use SimpleArchive to
serialize them.

The order in which we serialize our settings variables must be exactly the same order as we extract
them, in LoadSettings.

When returning, use the SetReturnString function, as this will provide a pointer to a string that will not
go out of scope when the function ends.

Bellow is an example from SerialAnalyzerSettings:

const char *SerialAnalyzerSettings::SaveSettings()

{

SimpleArchive text_archive;

text_archive << "KingstUartAnalyzer";
text_archive << mInputChannel;
text_archive << mBitRate;
text_archive << mBitsPerTransfer;
text_archive << mStopBits;
text_archive << mParity;

text_archive << mShiftOrder;
text_archive << mInverted;
text_archive << mUseAutobaud;

text_archive << mSerialMode;

return SetReturnString(text_archive.GetString());

2. SimulationDataGenerator

The next step after creating your {YourName}AnalyzerSettings files, is to create your
SimulationDataGenerator class, and you need to complete {YourName}SimulationDataGenerator.h and

{YourName}SimulationDataGenerator.cpp.

Your SimulationDataGenerator class provides simulated data so that you can test your analyzer against
controlled, predictable waveforms. Generally you should make the simulated data match the user
settings, so you can easily test under a variety of expected conditions. In addition, simulated data gives
end users an example of what to expect when using your analyzer, as well as examples of what the

waveforms should look like.

That said, fully implementing simulated data is not absolutely required to make an analyzer.

2.1 {YourName}SimulationDataGenerator.h

Besides the constructor and destructor, there are only two required functions, and two required

19 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

variables. Other functions and variables can be added, to help implement your simulated data. Here is
an example starting point, from SerialSimulationDataGenerator.h.

#ifndef SERIAL_SIMULATION_DATA_GENERATOR
#define SERIAL_SIMULATION_DATA_GENERATOR

#include <AnalyzerHelpers.h>

class SerialAnalyzerSettings;

class SerialSimulationDataGenerator

{

public:
SerialSimulationDataGenerator();

~SerialSimulationDataGenerator();

void Initialize(U32 simulation_sample_rate, SerialAnalyzerSettings *settings);
U32 GenerateSimulationData(U64 newest_sample_requested, U32 sample_rate,

SimulationChannelDescriptor **simulation_channels);

protected:
SerialAnalyzerSettings *mSettings;
U32 mSimulationSampleRateHz;
BitState mBitLow;
BitState mBitHigh;
U64 mValue;

U64 mMpModeAddressMask;
U64 mMpModeDataMask;
U64 mNumBitsMask;

protected: //Serial specific

void CreateSerialByte(U64 value);

ClockGenerator mClockGenerator;

SimulationChannelDescriptor mSerialSimulationData;
b
#endif //UNIO_SIMULATION_DATA_GENERATOR
The key to the SimulationDataGenerator is the class SimulationChannelDescriptor. You will need one of
these for every channel you will be simulated (serial, for example, only needs to simulate on one
channel). When your GenerateSimulationData function is called, your job will be to generate additional
simulated data, up to the amount requested. When complete, you provide the caller with a pointer to

an array of your SimulationChannelDescriptor objects.

20 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

2.2 {YourName}SimulationDataGenerator.cpp

2.2.1 Constructor / Destructor
You may or may not need anything in your constructor or destructor. For now at least, leave them
empty. At the time we’re constructed, we really have no idea what the settings are or anything else, so

there’s not much we can do at this point.

2.2.2 void {YourName}SimulationDataGenerator::Initialize(
U32 simulation_sample_rate, {YourName}AnalyzerSettings *settings)
This function provides you with the state of things as they are going to be when we start simulating.

We'll need to save this information.

First, save simulation_sample_rate and settings to member variables. Notice that we now have a
pointer to our AnalyzerSettings-derived class. This is good, now we know what all the settings will be
for our simulation — which channel(s) it will be on, as well as any other settings we might need — like if

the signal is inverted, etc.

Next, we'll want to initialize the state of our SimulationChannelDescriptor objects — we need to set

what channel it’s for, the sample rate, and the initial bit state (high or low).
At this point we’ll need to take a step back and discuss some key concepts.

BitState
BitState is a type used often in the SDK. It can be either BIT_LOW or BIT_HIGH, and represents a

channel’s logic state.

Sample Rate (samples per second)
Sample Rate refers to how many samples per second the data is. Typically it refers to how fast we’re

collecting data, but for simulation, it refers to how fast we’re generating sample data.

Sample Number
This is the absolute sample number, starting at sample 0. When a data collection starts, the first sample
collected is Sample Number 0. The next sample collected is Sample Number 1, etc. This is the same in

simulation. The first sample we’ll provide is Sample Number 0, and so on.

SimulationChannelDescriptor
We need this object to describe a single channel of data, and what its waveform looks like. We do this

in a very simple way:

® We provide the initial state of the channel (BIT_LOW, or BIT_HIGH)
e We move forward some number of samples, and then toggle the channel.
The initial bit state of the channel never changes. The state (high or low) of a particular sample number

can be determined by knowing how many times it has toggled up to that point (an even or odd number

21 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

of times).

Put another way:

] In the very beginning, we specify the initial state (BIT_LOW or BIT_HIGH). This is the state of
Sample Number 0.

e Then, we move forward (advance) some number of samples. 20 samples, for example.

e Then, we toggle the channel (low becomes high, high becomes low).

® Then we move forward (advance) some more. Maybe 100 samples this time.

e Then we toggle again.

e Then we move forward again, and then we toggle again, etc.
Let’s explore the functions used to do this:

void Advance(U32 num_samples_to_advance);
As you might guess, this is how we move forward in our simulated waveform. Internally, the object
keeps track of what its Sample Number is. The Sample Number starts at 0. After calling Advance(10) x3

times, the Sample Number will be 30.

void Transition();
This toggles the channel. BIT_LOW becomes BIT_HIGH, BIT_HIGH becomes BIT_LOW. The current
Sample Number will become the new BitState (BIT_LOW or BIT_HIGH), and all samples after that will

also be the new BitState, untill we toggle again.

void TransitionlfNeeded(BitState bit_state);
Often we don’t want to keep track of the current BitState, which toggles every time we call Transition.
TransitionlfNeeded checks the current BitState, and only transitions if the current BitState doesn’t

match the one we provide. In other words “Change to this bit_state, if we're not already”.

BitState GetCurrentBitState();

This function lets you directly ask what the current BitState is.

U64 GetCurrentSampleNumber();

This function lets you ask what the current SampleNumber is.

ClockGenerator
ClockGenerator is a class provided in AnalyzerHelpers.h which will let you enter time values, rather than

numbers-of-samples.

First, create an object using the ClockGenerator class, and then call the init function to initialize it.

void Init(double target_frequency, U32 sample_rate_hz);

You’ll need to call this before using the class. For sample_rate_hz, enter the sample rate we’ll be
generating data at. For target_frequency, enter the frequency (in Hz) you will most commonly be using.

For example, the bit rate of a SPI clock, etc.

22 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

U32 AdvanceByHalfPeriod(double multiple = 1.0);
This function returns how many samples are needed to move forward by one half of the period (for
example, the low time for a perfect square wave). You can also enter a multiple. For example, to get the

number of samples to move forward for a full period, enter 2.0.

U32 AdvanceByTimeS(double time_s);
This functions provides number of samples needed to advance by the arbitrary time, time_s. Note that

this is in seconds, so enter 1e-6 for for one microsecond, etc.

Let's take a look at an example in SerialSimulationDataGenerator.cpp

void SerialSimulationDataGenerator::Initialize(U32 simulation_sample_rate,

SerialAnalyzerSettings *settings)

mSimulationSampleRateHz = simulation_sample_rate;

mSettings = settings;

mClockGenerator.Init(mSettings->mBitRate, simulation_sample_rate);
mSerialSimulationData.SetChannel(mSettings->mInputChannel);

mSerialSimulationData.SetSampleRate(simulation_sample_rate);

if (mSettings->mInverted == false) {
mBitLow = BIT_LOW;
mBitHigh = BIT_HIGH;
} else {
mBitLow = BIT_HIGH;
mBitHigh = BIT_LOW;

mSerialSimulationData.SetInitialBitState(mBitHigh);

mSerialSimulationData.Advance(mClockGenerator.AdvanceByHalfPeriod(10.0));

mValue = 0;
mMpModeAddressMask = 0;
mMpModeDataMask = ©;

mNumBitsMask = @;

U32 num_bits = mSettings->mBitsPerTransfer;

for (U32 i = @; i < num_bits; i++) {
mNumBitsMask <<= 1;

mNumBitsMask |= @x1;

if (mSettings->mSerialMode == SerialAnalyzerEnums::MpModeMsbOneMeansAddress)

mMpModeAddressMask = @x1ull << (mSettings->mBitsPerTransfer);

23 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

if (mSettings->mSerialMode == SerialAnalyzerEnums: :MpModeMsbZeroMeansAddress)

mMpModeDataMask = @x1ull << (mSettings->mBitsPerTransfer);

2.2.3 U32 {YourName}SimulationDataGenerator::GenerateSimulationData(

U64 largest_sample_requested, U32 sample_rate,

SimulationChannelDescriptor **simulation_channels)
This function is repeatedly called to request more simulated data. When it’s called, just keep going
where you left off. In addition, you can generate more data that requested, to make things easy -- that
way you don’t have to stop half way in the middle of something and try to pick it back up later exactly

where you left off.

When we leave the function, our Sample Number — in our SimulationChannelDecriptor object(s) must
be equal to or larger than largest_sample_requested. Actually, this number needs to first be adjusted
(for technical reasons related to future compatibility). Use the helper function

AdjustSimulationTargetSample to do this, as we’ll see in a moment.

The parameter simulation_channels is to provide the caller with a pointer to an array of your
SimulationChannelDecriptor objects. We'll set this pointer at the end of the function. The return value

is the number of elements in the array — the number of channels.

The following is an example of SerialSimulationDataGenerator.cpp:

U32 SerialSimulationDataGenerator::GenerateSimulationData(U64 largest_sample_requested,

U32 sample_rate, SimulationChannelDescriptor **simulation_channels)

U64 adjusted_largest_sample_requested = AnalyzerHelpers::AdjustSimulationTargetSample(

largest_sample_requested, sample_rate, mSimulationSampleRateHz);

while (mSerialSimulationData.GetCurrentSampleNumber() < adjusted_largest_sample_requested) {
if (mSettings->mSerialMode == SerialAnalyzerEnums::Normal) {
CreateSerialByte(mValue++);
mSerialSimulationData.Advance(mClockGenerator.AdvanceByHalfPeriod(10.0));
} else {
U64 address = 0x1 | mMpModeAddressMask;

CreateSerialByte(address);

for (U32 i=0; i<4; i++) {
mSerialSimulationData.Advance(mClockGenerator.AdvanceByHalfPeriod(2.0));
CreateSerialByte((mValue++ & mNumBitsMask) | mMpModeDataMask);

¥

mSerialSimulationData.Advance(mClockGenerator.AdvanceByHalfPeriod(20.0));

24 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

address = 0x2 | mMpModeAddressMask;

CreateSerialByte(address);

for (U32 i=0; i<4; i++) {
mSerialSimulationData.Advance(mClockGenerator.AdvanceByHalfPeriod(2.0));

CreateSerialByte((mValue++ & mNumBitsMask) | mMpModeDataMask);
s

mSerialSimulationData.Advance(mClockGenerator.AdvanceByHalfPeriod(20.0));

*simulation_channels = &mSerialSimulationData;

return 1;

void SerialSimulationDataGenerator::CreateSerialByte(U64 value)

mSerialSimulationData.Transition();
mSerialSimulationData.Advance(mClockGenerator.AdvanceByHalfPeriod());
if (mSettings->mInverted == true)

value = ~value;

U32 num_bits = mSettings->mBitsPerTransfer;
if (mSettings->mSerialMode != SerialAnalyzerEnums::Normal)

num_bits++;

BitExtractor bit_extractor(value, mSettings->mShiftOrder, num_bits);

for (U32 i=@; i<num_bits; i++) {
mSerialSimulationData.TransitionIfNeeded(bit_extractor.GetNextBit());

mSerialSimulationData.Advance(mClockGenerator.AdvanceByHalfPeriod());

if (mSettings->mParity == AnalyzerEnums::Even) {
if (AnalyzerHelpers::IsEven(AnalyzerHelpers::GetOnesCount(value)) == true)
mSerialSimulationData.TransitionIfNeeded(mBitLow);
else
mSerialSimulationData.TransitionIfNeeded(mBitHigh);
mSerialSimulationData.Advance(mClockGenerator.AdvanceByHalfPeriod());
} else if (mSettings->mParity == AnalyzerEnums::0dd) {
if (AnalyzerHelpers::IsOdd(AnalyzerHelpers: :GetOnesCount(value)) == true)
mSerialSimulationData.TransitionIfNeeded(mBitLow);

else

25 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

mSerialSimulationData.TransitionIfNeeded(mBitHigh);
mSerialSimulationData.Advance(mClockGenerator.AdvanceByHalfPeriod());

}

mSerialSimulationData.TransitionIfNeeded(mBitHigh);

mSerialSimulationData.Advance(mClockGenerator.AdvanceByHalfPeriod(mSettings->mStopBits));

¥

There are a few things we could do to clean this up. First, we could save the samples_per_bit as a
member variable, and compute it only once, in the Initialize function. If we wanted to be more accurate,
we could use the ClockGenerator class to pre-populate an array of samples_per_bit values, so on

average the timing would be perfect. We would use this as a lookup each time we Advance one bit.
Another thing we could do is use the DataExtractor class to take care of the bit masking/testing.
However, in our simple example what we have works well enough, and it has the advantage of being a

bit more transparent.

2.2.4 Simulating Multiple Channels
Simulating multiple channels requres multiple SimulationChannelDescriptors, and they must be in an

array. The best way to this is to use the helper class, SimulationChannelDescriptorGroup.

Here is an example of 12C (2 channels)—these are the the member varaible definitions in
12cSimulationDataGenerator.h:

SimulationChannelDescriptorGroup mI2cSimulationChannels;
SimulationChannelDescriptor *mSda;

SimulationChannelDescriptor *mScl;

Then, in the Initialize function:

mSda = mI2cSimulationChannels.Add(settings->mSdaChannel, mSimulationSampleRateHz, BIT_HIGH);
mScl = mI2cSimulationChannels.Add(settings->mSclChannel, mSimulationSampleRateHz, BIT_HIGH);

And to provide the array to the caller of GenerateSimulationData:

*simulation_channels = mI2cSimulationChannels.GetArray();

return mI2cSimulationChannels.GetCount();

You can use each SimulationChannelDescriptor object pointer separately, calling Advance, Transition,
etc on each one, or you can manipulate them as a group, using the AdvanceAll method of the
SimulationChannelDescriptorGroup object.

void AdvanceAll(U32 num_samples_to_advance)

Before returning from GenerateSimulationData, be sure that the Sample Number of all of your
SimulationChannelDescriptor objects exceed adjusted_largest_sample_requested.
Examples of generating simulation data:

U32 I2cSimulationDataGenerator::GenerateSimulationData(U64 largest_sample_requested,

U32 sample_rate, SimulationChannelDescriptor **simulation_channels)

26 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

U64 adjusted_largest_sample_requested = AnalyzerHelpers::AdjustSimulationTargetSample(

largest_sample_requested, sample_rate, mSimulationSampleRateHz);

while (mScl->GetCurrentSampleNumber() < adjusted_largest_sample_requested) {
mI2cSimulationChannels.AdvanceAll(mClockGenerator.AdvanceByHalfPeriod(500));

if (rand() % 20 == @) {
CreateStart();
CreateI2cByte(0x24, I2C_NAK);
CreateStop();

mI2cSimulationChannels.AdvanceAll(mClockGenerator.AdvanceByHalfPeriod(80));

CreateI2cTransaction(@xA@, I2C_WRITE, mValue++ + 12);
mI2cSimulationChannels.AdvanceAll(mClockGenerator.AdvanceByHalfPeriod(80));
CreateI2cTransaction(@xA@, I2C_READ, mValue++ - 43 + (rand() % 100));
mI2cSimulationChannels.AdvanceAll(mClockGenerator.AdvanceByHalfPeriod(50));
CreateI2cTransaction(@x24, I2C_READ, mValue++ + (rand() % 100));

mI2cSimulationChannels.AdvanceAll(mClockGenerator.AdvanceByHalfPeriod(20090));

CreateI2cTransaction(@x24, I2C_READ, mValue++ + 16 + (rand() % 100));

mI2cSimulationChannels.AdvanceAll(mClockGenerator.AdvanceByHalfPeriod(100));

*simulation_channels = mI2cSimulationChannels.GetArray();
return mI2cSimulationChannels.GetCount();
}

Note that above we use a number of helper functions and classes. Let’s discuss BitExtractor briefly.

BitExtractor

BitExtractor(U64 data, AnalyzerEnums::ShiftOrder shift_order, U32 num_bits);
BitState GetNextBit();

Some protocols have varaible numbers of bits per word, and settings for if the most significant bit is
first or last. This can be a pain to manage, so we made the BitExtraxtor class. This can be done by hand

of course if you like, but this class tends to tidy up the code quite a bit in our experiece.

Similar, but reveresed, is the DataBuilder class, but as this generally used for collecting data, we’ll talk

more about it then.

AnalyzerHelpers

Some static helper functions that might be helpful, include:

27 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

static bool IsEven(U64 value);
static bool IsOdd(U64 value);
static U32 GetOnesCount(U64 value);
static U32 Diff32(U32 a, U32 b);

3. AnalyzerResults

After creating your SimulationDataGenerator class, working on your {YourName}AnalyzerResults files is

the next step.

AnalyzerResults is what we use to transform our results into text for display and as well as exported files,

etc.

Tip: You may end up finalizing may of the details about how your results are saved when you work on
your main Analyzer file — {YourName}Analyzer.cop/.h; You can simply implement the bare minimum of

the functions in your {YourName}AnalyzerResults.cpp file, and come back to it later.

3.1 {YourName}AnalyzerResults.h

In addition to the constructor and destructor, there are 5 functions we’ll need to implement.

Here’s the SerialAnalyzerResults header file. Yours will like very similar, with the only difference typically
being the enums and/or defines you need.

#ifndef SERIAL_ANALYZER_RESULTS
#define SERIAL_ANALYZER_RESULTS

#include <AnalyzerResults.h>

#define FRAMING_ERROR_FLAG (1 << @)
#define PARITY_ERROR_FLAG (1 << 1)
#define MP_MODE_ADDRESS_FLAG (1 << 2)

class SerialAnalyzer;

class SerialAnalyzerSettings;

class SerialAnalyzerResults : public AnalyzerResults
{
public:
SerialAnalyzerResults(SerialAnalyzer *analyzer, SerialAnalyzerSettings *settings);

virtual ~SerialAnalyzerResults();

virtual void GenerateBubbleText(U64 frame_index, Channel& channel, DisplayBase display_base);
virtual void GenerateExportFile(const char *file, DisplayBase display_base,

U32 export_type_user_id);

28 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

virtual void GenerateFrameTabularText(U64 frame_index, DisplayBase display_base);
virtual void GeneratePacketTabularText(U64 packet_id, DisplayBase display_base);

virtual void GenerateTransactionTabularText(U64 transaction_id, DisplayBase display base);
protected: //functions

protected: //vars
SerialAnalyzerSettings *mSettings;
SerialAnalyzer *mAnalyzer;

}s

#endif //SERTAL_ANALYZER_RESULTS

3.2 {YourName}AnalyzerResults.cpp

3.2.1 Constructors and analytic functions

In your constructor, save copies of the Analyzer and Settings raw pointers provided. There’s generally
nothing else to do for the constructor or destructor. Below is an example from
SerialAnalyzerResults.cpp:

SerialAnalyzerResults::SerialAnalyzerResults(SerialAnalyzer *analyzer,

SerialAnalyzerSettings *settings)

: AnalyzerResults(),

mSettings(settings),

mAnalyzer(analyzer)
{
}
SerialAnalyzerResults::~SerialAnalyzerResults()
{
}

The basic result an analyzer generates is called a Frame. This could be byte of serial data, the header of
a CAN packet, the MOSI and MISO values from 8-bit of SPI, etc. Smaller elements, such the Start and
Stop events in 12C can be saved as Frames, are probably better saved as be graphical elements (called
Markers) and otherwise ignored. Collections of Frames make up Packets, and collections of Packets

make up Transactions.

95% of what you will be concerned about is Frames. What exactly a Frame represents is your choice,
but unless your protocol is fairly complicated (such as USB, CAN, Ethernet) the best bet is to make the

Frame your main result element.

We’ll get into more detail regarding how to save your results when we describe to your

Analyzer-derived class.

Frame

29 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

A Frame is an object, with fairly generic member variables which can be used to save results. Hereis
the definition of a Frame:

class LOGICAPI Frame

{

public:
Frame();
Frame(constFrame &frame);
~Frame();
S64 mStartingSampleInclusive;
S64 mEndingSampleInclusive;
U64 mDatal;
U64 mData2;
U8 mType;
U8 mFlags;

};

A Frame represents a piece of information conveyed by your protocol over an expanse of time. The
member variables mStartingSamplelnclusive and mEndingSamplelinclusive are the sample numbers for
the beginning and end of the Frame. Note that Frames may not overlap; they cannot even share the
same sample. For example, if a single clock edge ends one Frame, and starts a new Frame, then you’ll

need to add one (+1) to the mStartingSamplelinclusive of the second frame.

In addition, the Frame can carry two 64-bit numbers as data. For example, in SPI, one of these is used
for the MISO result, and the other for the MISO result. Often times you’ll only use one of these

variables.

The mType variable is intended to be used to save a custom-defined enum value, representing the type
of Frame. For example, CAN can have many different types of frames — header, data, CRC, etc. Serial

only has one type, and it doesn’t use this member variable.

mFlags is intended to be a holder for custom flags which might apply to frame. Note that this is not
intended for use with a custom an enum, but rather for individual bits that can be or’ed together. For
example, in Serial, there is a flag for framing-error, and a flag for parity error.

#define FRAMING_ERROR_FLAG (1 << O)
#define PARITY_ERROR_FLAG (1 << 1)

Two flags are reserved by the system, and will produce an error or warning indication on the bubble

displaying the Frame.

3.2.2 void {YourName}AnalyzerResults::GenerateBubbleText(U64 frame_index,
Channel &channel, DisplayBase display_base)
GenerateBubbleText exists to retrieve text to put in a bubble to be displayed on the screen. If you like

you can leave this function empty, and return to it after implementing the rest of your analyzer.

30 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

The frame_index is the index to use to get the Frame itself — for example:

Frame frame = GetFrame(frame_index);
Rarely, an analyzer needs to display results on more than one channel (SPI is the only example of this in
an analyzer we make). If so, the channel which is requesting the bubble is specified in the channel

parameter.

display_base specifies the radix (hex, decimal, binary) that any numerical values should be displayed in.
There are some helper functions provided so you should never have to deal directly with this issue.

enum DisplayBase {Binary, Decimal, Hexadecimal, ASCII, AsciiHex};
AnalyzerHelpers: :GetNumberString(U64 number, DisplayBase display_base, U32 num_data_bits,

char *result_string, U32 result_string_max_length);
In GetNumberString, above, note that num_data_bits is the number of bits which are actually part of
your result. For sample, for 12C, this is always 8. It will depend on your protocol and possibly on user
settings. Providing this will let GetNumberString produce a well-formatted number with the right

amount of zero-padding for the type of value under consideration.

Bubbles can display different length strings, depending on how much room is available. You should
generate several results strings. The simplest might simply indicate the type of contents (‘D’ for data,
for example), longer ones might indicate the full number (“OxFF01”), and longer ones might be very
verbose (“Left Channel Audio Data: OxFF01”).

To provide strings to the caller, use the AddStringResult function. This will make sure that the strings

persist after the function has returned. Always call ClearResultStrings before adding any string results.

Note that to easily concatenate multiple strings, simply provide AddStringResult with more strings.
Void ClearResultStrings();
Void AddResultString(const char *stril, const char *str2 = NULL, const char *str3 = NULL,
const char *str4 = NULL, const char *str5 = NULL, const char *str6 = NULL);

Here’s the Serial Analyzer’s GenerateBubbleText function:

void SerialAnalyzerResults::GenerateBubbleText(U64 frame_index, Channel& /*channel*/,

DisplayBase display _base) //unrefereced vars commented out to remove warnings.

//we only need to pay attention to 'channel' if we're making bubbles for more than
//one channel (as set by AddChannelBubblesWillAppearOn)
ClearResultStrings();

Frame frame = GetFrame(frame_index);
bool framing_error = false;
if ((frame.mFlags & FRAMING_ERROR_FLAG) != @)

framing_error = true;

bool parity_error = false;

31 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

if ((frame.mFlags & PARITY_ERROR_FLAG) != 0)

parity_error = true;

U32 bits_per_transfer = mSettings->mBitsPerTransfer;
if (mSettings->mSerialMode != SerialAnalyzerEnums::Normal)

bits_per_transfer--;

char number_str[128];
AnalyzerHelpers: :GetNumberString(frame.mDatal, display_base, bits_per_transfer,

number_str, 128);

char result_str[128];

//MP mode address case:
bool mp_mode_address_flag = false;
if ((frame.mFlags & MP_MODE_ADDRESS_FLAG) != @) {

mp_mode_address_flag = true;

AddResultString("A");
AddResultString("Addr");

if (framing_error == false) {
snprintf(result_str, sizeof(result_str), "Addr: %s", number_str);

AddResultString(result_str);

snprintf(result_str, sizeof(result_str), "Address: %s", number_str);
AddResultString(result_str);

} else {
snprintf(result_str, sizeof(result_str), "Addr: %s (framing error)", number_str);
AddResultString(result_str);
snprintf(result_str, sizeof(result_str), "Address: %s (framing error)", number_str);
AddResultString(result_str);

}

return;

//normal case:
if ((parity_error == true) || (framing_error == true)) {

AddResultString("!");

snprintf(result_str, sizeof(result_str), "%s (error)", number_str);

AddResultString(result_str);

if (parity_error == true && framing_error == false)

32 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

snprintf(result_str, sizeof(result_str), "%s (parity error)", number_str);
else if (parity_error == false && framing_error == true)
snprintf(result_str, sizeof(result_str), "%s (framing error)", number_str);
else
snprintf(result_str, sizeof(result_str), "%s (framing error & parity error)",
number_str);
AddResultString(result_str);
} else {
AddResultString(number_str);

3.2.3 void {YourName}AnalyzerResults::GenerateExportFile(const char *file,
DisplayBase display_base, U32 export_type_user_id)
This function is called when the user tries to export the analyzer results to a file. If you like, you can

leave this function empty, and come back to it after finalizing the rest of your analyzer design.

The file parameter is string containing the full path of the file you should create and write to with the
analyzer results.

std::ofstream file stream(file, std::ios::out);
The display_base parameter contains the radix which should be used to display numerical results.

The export_type_user_id parameter is the id associated with the export-type the user selected. You
specify what these options are (there should be at least one) in the constructor of your

AnalyzerSettings-derived class. If you only have one export option you can ignore this parameter.

Often times you’ll want to print out the time (in seconds) associated with a particular result. To do this,
use the GetTimeString helper function. You'll need the trigger sample number and the sample rate —
which can be obtained from your Analyzer object pointer.

U64 trigger_sample = mAnalyzer->GetTriggerSample();
U32 sample_rate = mAnalyzer->GetSampleRate();
static void AnalyzerHelpers::GetTimeString(U64 sample, U64 trigger_sample,

U32 sample_rate_hz, char *result_string, U32 result_string_max_length);

Other than that, the implementation is pretty straightforward. Here is an example from
SerialAnalyzerResults.cpp:

void SerialAnalyzerResults::GenerateExportFile(const char *file, DisplayBase display_base,

U32 /*export_type_user_id*/)

//export_type_user_id is only important if we have more than one export type.

std::stringstream ss;

U64 trigger_sample = mAnalyzer->GetTriggerSample();

33 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

U32 sample_rate = mAnalyzer->GetSampleRate();

U64 num_frames = GetNumFrames();

void *f = AnalyzerHelpers::StartFile(file);

if (mSettings->mSerialMode == SerialAnalyzerEnums::Normal) {
//Normal case -- not MP mode.

ss << "Time [s],Value,Parity Error,Framing Error" << std::endl;

for (U32 i=0; i < num_frames; i++) {

Frame frame = GetFrame(i);

char time_str[128];
AnalyzerHelpers::GetTimeString(frame.mStartingSampleInclusive,

trigger_sample, sample_rate, time_str, 128);

char number_str[128];
AnalyzerHelpers: :GetNumberString(frame.mDatal, display_base,
mSettings->mBitsPerTransfer, number_str, 128);

ss << time_str << "," << number_str;

if ((frame.mFlags & PARITY_ERROR_FLAG) != 0)

ss << ",Error,";

else

ss << ",,";

if ((frame.mFlags & FRAMING_ERROR_FLAG) != @)

ss << "Error";

ss << std::endl;

AnalyzerHelpers: :AppendToFile((U8%*)ss.str().c_str(), ss.str().length(), f);
ss.str(std::string());

if (UpdateExportProgressAndCheckForCancel(i, num_frames) == true) {

AnalyzerHelpers::EndFile(f);

return;
}
}
} else {
//MP mode.

ss << "Time [s],Packet ID,Address,Data,Framing Error" << std::endl;

U64 address = 0;

34 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK

www.qgdkingst.com

}

for (U32 i=0; i < num_frames; i++) {

Frame frame = GetFrame(i);
if ((frame.mFlags & MP_MODE_ADDRESS_FLAG) != @) {
address = frame.mDatal;

continue;

U64 packet_id = GetPacketContainingFrameSequential(i);
char time_str[128];

AnalyzerHelpers::GetTimeString(frame.mStartingSampleInclusive,

trigger_sample, sample_rate, time_str, 128);

char address_str[128];
AnalyzerHelpers: :GetNumberString(address, display_base,

mSettings->mBitsPerTransfer

char number_str[128];
AnalyzerHelpers::GetNumberString(frame.mDatal, display_base,

mSettings->mBitsPerTransfer
if (packet_id == INVALID RESULT_INDEX)

< "M o<

"o
>

ss << time_str <<

"o
>

<< address_str <<
else

ss << time_str << "," << packet_id << "," << address_str <<

if ((frame.mFlags & FRAMING_ERROR_FLAG) != @)

ss << "Error";

ss << std::endl;

- 1, address_str, 128);

- 1, number_str, 128);

<< number_str <<

o,
>

<< number_str <<

AnalyzerHelpers: :AppendToFile((U8*)ss.str().c_str(), ss.str().length(), f);

ss.str(std::string());

if (UpdateExportProgressAndCheckForCancel(i, num_frames) == true) {

AnalyzerHelpers::EndFile(f);

return;

UpdateExportProgressAndCheckForCancel (num_frames, num_frames);

AnalyzerHelpers::EndFile(f);

35

2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

3.2.4 void {YourName}AnalyzerResults::GenerateFrameTabularText(
U64 frame_index, DisplayBase display_base)
GenerateFrameTabularText is for producing text for tabular display which is not yet implemented. You

can safely leave it empty.

GenerateFrameTabularText is almost the same as GenerateBubbleText, except that you should generate
only one text result. Ideally the string should be concise, and only be a couple inches long or less under

normal (non error) circumstances.

Here is an example from SerialAnayzerResults.cpp:

void SerialAnalyzerResults::GenerateFrameTabularText(U64 frame_index,

DisplayBase display_base)

ClearTabularText();

Frame frame = GetFrame(frame_index);

bool framing_error = false;
if ((frame.mFlags & FRAMING_ERROR_FLAG) != @)

framing_error = true;

bool parity_error = false;
if ((frame.mFlags & PARITY_ERROR_FLAG) != 0)

parity_error = true;

U32 bits_per_transfer = mSettings->mBitsPerTransfer;
if (mSettings->mSerialMode != SerialAnalyzerEnums::Normal)

bits_per_transfer--;

char number_str[128];
AnalyzerHelpers: :GetNumberString(frame.mDatal, display_base, bits_per_transfer,

number_str, 128);
char result_str[128];

//MP mode address case:
bool mp_mode_address_flag = false;
if ((frame.mFlags & MP_MODE_ADDRESS_FLAG) != @) {

mp_mode_address_flag = true;

if (framing_error == false) {
snprintf(result_str, sizeof(result_str), "Address: %s", number_str);
AddTabularText(result_str);

} else {

snprintf(result_str, sizeof(result_str), "Address: %s (framing error)", number_str);

36 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

AddTabularText(result_str);
}

return;

//normal case:
if ((parity_error == true) || (framing_error == true)) {
if (parity_error == true && framing_error == false)
snprintf(result_str, sizeof(result_str), "%s (parity error)", number_str);
else if (parity_error == false && framing_error == true)
snprintf(result_str, sizeof(result_str), "%s (framing error)", number_str);
else
snprintf(result_str, sizeof(result_str), "%s (framing error & parity error)",
number_str);
AddTabularText(result_str);
} else {
AddTabularText(number_str);

3.2.5 void {YourName}AnalyzerResults::GeneratePacketTabularText(
U64 packet_id, DisplayBase display_base)
This function is used to produce strings representing packet results for the tabular view. For now, just

leave it empty. We'll be updating the SDK and software to take advantage of this capability later.

3.2.6 void {YourName}AnalyzerResults::GenerateTransactionTabularText(
U64 transaction_id, DisplayBase display_base)
This function is used to produce strings representing packet results for the tabular view. For now, just

leave it empty. We'll be updating the SDK and software to take advantage of this capability later.

4. Analyzer

Your Analyzer-derived class is the heart of the analyzer. It’s here were we analyze the bits coming in —in
real time — and generate analyzer results. Other than a few other housekeeping things, that’s it. Let’s

get started.

4.1 {YourName}Analyzer.h

In addition to the constructor and destructor, here are the functions you’ll need to implement:
virtual voidWorkerThread();
virtual U32 GenerateSimulationData(U64 newest_sample_requested, U32 sample_rate,
SimulationChannelDescriptor **simulation_channels);
virtual U32 GetMinimumSampleRateHz();

virtual const char *GetAnalyzerName() const;

37 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

virtual boolNeedsRerun();

extern "C"ANALYZER_EXPORT const char *__cdecl GetAnalyzerName();

extern "C"ANALYZER_EXPORT Analyzer *__cdecl CreateAnalyzer();

extern "C"ANALYZER_EXPORT void _ cdecl DestroyAnalyzer(Analyzer *analyzer);

You'll also need these member variables:
std::auto_ptr< {YourName}AnalyzerSettings > mSettings;
std::auto_ptr< {YourName}AnalyzerResults > mResults;
{YourName}SimulationDataGenerator mSimulationDataGenerator;

bool mSimulationInitilized;

You’ll also need one AnalyzerChannelData raw pointer for each input. For SerialAnalyzer, for example,
we need

AnalyzerChannelData *mSerial;

As you develop your analyzer, you'll add additional member variables and helper functions dependning
on your analysis needs.
Here is an example of SerialAnalyzer.h:

#ifndef SERIAL_ANALYZER_H
#define SERIAL_ANALYZER_H

#include <Analyzer.h>
#include "SerialAnalyzerResults.h"

#include "SerialSimulationDataGenerator.h"

class SerialAnalyzerSettings;

class ANALYZER_EXPORT SerialAnalyzer : public Analyzer
{
public:

SerialAnalyzer();

virtual ~SerialAnalyzer();

virtual void SetupResults();

virtual void WorkerThread();

virtual U32 GenerateSimulationData(U64 newest_sample_requested, U32 sample_rate,
SimulationChannelDescriptor **simulation_channels);

virtual U32 GetMinimumSampleRateHz();

virtual const char *GetAnalyzerName() const;

virtual bool NeedsRerun();

#pragma warning(push)

#pragma warning(disable : 4251)

38 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

protected: //functions

void ComputeSampleOffsets();

protected: //vars
std::auto_ptr< SerialAnalyzerSettings > mSettings;
std::auto_ptr< SerialAnalyzerResults > mResults;

AnalyzerChannelData *mSerial;

SerialSimulationDataGenerator mSimulationDataGenerator;

bool mSimulationInitilized;

//Serial analysis vars:

U32 mSampleRateHz;
std::vector<U32> mSampleOffsets;
U32 mParityBitOffset;

U32 mStartOfStopBitOffset;

U32 mEndOfStopBitOffset;
BitState mBitLow;

BitState mBitHigh;

#pragma warning(pop)
¥

extern "C" ANALYZER_EXPORT const char *_ cdecl GetAnalyzerName();
extern "C" ANALYZER_EXPORT Analyzer *__cdecl CreateAnalyzer();
extern "C" ANALYZER_EXPORT void _ cdecl DestroyAnalyzer(Analyzer *analyzer);

#endif //SERIAL_ANALYZER_H

4.2 {YourName}Analyzer.cpp

4.2.1 Constructor
Your constructor will look something like this
{YourName}Analyzer::{YourName}Analyzer()
: Analyzer(),
mSettings(new{YourName}AnalyzerSettings()),

mSimulationInitilized(false)

SetAnalyzerSettings(mSettings.get());
b

Note that here you’re calling the base class conststructor, newing your AnalyzerSettings-derived class,

and providing the base class with a pointer to your AnalyzerSettings-derived object.

39 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

4.2.2 Destructor
This only thing your destructor must do is call KillThread. This is a base class member function and will

make sure your class destructs in the right order.

4.2.3 void {YourName}Analyzer::SetupResults()
In this function, you need to generate the AnalyzerResults-derived class object, save the object pointer
to the Analyzer-derived class, and pass the channel display analyzing result to the

AnalyzerResults-derived class.

For example in SerialAnalyzer.cpp:

void SerialAnalyzer::SetupResults()

{
mResults.reset(new SerialAnalyzerResults(this, mSettings.get()));
SetAnalyzerResults(mResults.get());
mResults->AddChannelBubblesWillAppearOn(mSettings->mInputChannel);
b
In SpiAnalyzer.cpp:
void SpiAnalyzer::SetupResults()
{
mResults.reset(new SpiAnalyzerResults(this, mSettings.get()));
SetAnalyzerResults(mResults.get());
if (mSettings->mMosiChannel != UNDEFINED_CHANNEL)
mResults->AddChannelBubblesWillAppearOn(mSettings->mMosiChannel);
if(mSettings->mMisoChannel != UNDEFINED_CHANNEL)
mResults->AddChannelBubblesWillAppearOn(mSettings->mMisoChannel);
b

4.2.4 void {YourName}Analyzer::WorkerThread()
This function the key to everything —it’s where you’ll decode the incoming data. Let’s leave it empty for

now, and we’ll discuss in detail once we complete the other housekeeping functions.

4.2.5 bool {YourName}Analyzer::NeedsRerun()

Generally speaking, just return false in this function. For more detail, read on.

This function is called when your analyzer has finished analyzing the collected data (this condition is

detected from outside your analyzer.)

This function gives you the opportunity to run the analyzer all over again, on the same data. To do this,
simply return true. Otherwise, return false. The only thing this is currently used for is for our Serial
analyzer, for "autobaud". When using autobaud, we don’t know ahead of time what the serial bit rate
will be. If the rate turns out to be significantly different from the rate we ran the analysis at, we return

true to re-run the analysis.

40 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

If you return true, that’s all there is to do. Your analyzer will be re-run automatically.

4.2.6 U32 {YourName}Analyzer::GenerateSimulationData(
U64 Minimum_sample_index, U32 device_sample_rate,
SimulationChannelDescriptor **simulation_channels)
This is the function that gets called to obtain simulated data. We made a dedicated class for handling
this earlier — we just need to do some housekeeping here to hook it up.

U32 {YourName}Analyzer::GenerateSimulationData(U64 minimum_sample_index, U32 device_sample_rate,

SimulationChannelDescriptor **simulation_channels)

{
if (mSimulationInitilized == false) {
mSimulationDataGenerator.Initialize(GetSimulationSampleRate(), mSettings.get());
mSimulationInitilized = true;
}
return mSimulationDataGenerator.GenerateSimulationData(minimum_sample_index,
device_sample_rate, simulation_channels);
}

4.2.7 U32 {YourName}SerialAnalyzer::GetMinimumSampleRateHz()
This function is called to see if the user’s selected sample rate is sufficient to get good results for this

analyzer.

An example in SerialAnalyzer.cpp:

U32 SerialAnalyzer::GetMinimumSampleRateHz ()
{

return mSettings->mBitRate * 4;

}
If we set baud rate as 9600, then the minium sampling frequency was suggested wo be more than

9600*4=38400Hz.

4.2.8 const char *{YourName}Analyzer::GetAnalyzerName() const
Simply return the name you would like to see in software’s GUI.

return "UART/232/485";

4.2.9 const char *GetAnalyzerName()
Return the same string as in the previous function.

return "UART/232/485";

4.2.10 Analyzer *CreateAnalyzer()

Return a pointer to a new instance of your Analyzer-derived class.

4.2.11 void DestroyAnalyzer(Analyzer *analyzer)

Simply call delete on the provided pointer.

41 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

4.2.12 Details
Ok, now that everything else is taken care of, let’s look at the most important part of the analyer in
detail.

First, we’ll new our AnalyzerResults-derived object.

mResults.reset(new{YourName}AnalyzerResults(this, mSettings.get()));

Well provide a pointer to our results to the base class:

SetAnalyzerResults(mResults.get());

Let’s indicate which channels we’ll be displaying results on (in the form of bubbles). Usually this will
only be one channel. (Except in the case of SPI, where we’ll want to put bubbles on both the MISO and
MISO lines.) Only indicate where we will display bubbles — other markup, like tick marks, arrows, etc,
are not bubbles, and should not be reported here.

mResults->AddChannelBubblesWillAppearOn(mSettings->mInputChannel);

We’'ll probably want to know (and save in a member variable) the sample rate.

mSampleRateHz = GetSampleRate();

Now we need to get access to the data itself. We'll need to get pointers to AnalyzerChannelData objects
for each channel we’ll need data from. For Serial, we’ll just need one. For SPI, we might need 4. Etc.

mSerial = GetAnalyzerChannelData(mSettings->mInputChannel);

We’ve now ready to start traversing the data, and recording results. We'll look at each of these tasks in

turn.

First, a word of advice

A protocol is typically fairly straightforward, when it behaves exactly as it supposed to. The more your
analyzer needs to deal with exceptions to the rule, the more sophisticated it’ll need to be. The best bet
is probably to start as simple as possible, and add more “gotchas” as they are discovered, rather than to

try and design an elaborate, bulletproof analyzer from the start, especially when you’re new to the API.

AnalyzerChannelData

AnalyzerChannelData is the class that will give us access to the data from a particular input. This will
provide data in a serialized form — we will not have “random access” to any bit in the saved data. Rather,
we will start at the beginning, and move forward as more data becomes available. In fact we’ll never
know when we’re at the “end” of the data or not — attempts to move forward in the stream will block
until more data becomes available. This will allow our analyzer to process data in a real-time manner. (It
may backlog, of course, if it can’t keep up — although generally the collection will end at some point and

we’ll be able to finish).

AnalyzerChannelData - State

If we're not sure where are in the stream, or if the input is currently high or low, we can just ask:

42 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

U64 GetSampleNumber();
BitState GetBitState();

AnalyzerChannelData - Basic Traversal

We'll need some ability to move forward in the stream. We have three basic ways to do this.

U32 Advance(U32 num_samples);
We can move forward in the stream by a specific number of samples. This function will return how

many times the input toggled (changed from a high to a low, or low to a high) to make this move.

U32 AdvanceToAbsPosition(U64 sample_number);
If we want to move forward to a particular absolute position, we can use this function. It also returns

the number of times the input changed during the move.

void AdvanceToNextEdge();
We also might want to move forward until the state changes. After calling this function you might want

to call GetSampleNumber to find out how far you’ve come.

AnalyzerChannelData- Advanced Traversal (looking ahead without moving)
As you develop your analyzer(s) certain tasks may come up that call for more sophisticated traversal.

Here are some ways of doing it.

U64 GetSampleOfNextEdge();
This function does not move your position in the stream. Remember, you can not move backward in the

stream, so sometimes seeing what’s up ahead without moving can be very important.

bool WouldAdvancingCauseTransition(U32 num_samples);
This function does not move your position in the stream. Here you find out if moving forward a given

number of samples would cause the bit state (low or high) to change.

bool WouldAdvancingToAbsPositionCauseTransition(U64 sample_number);

This is the same as the prior function, except you provide the absolute position.

Filling in and saving Frames
Using the above AnalyzerChannelData class, we can now move through a channel’s data and analyze it.

Now let’s discus how to store results.

We described Frames when talking about the AnalyzerResults-derived class. A Frame is the basic unit

results are saved in. Frames have:

® starting and ending time (starting and ending sample number)
® X2 64-bit values to save results in
® an 8-bit type variable - to specify the type of Frame

® an 8-bit flags variable - to specify Yes/No types of results.

43 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

When we have analyzed far enough, and now have a complete Frame we would like to record, we do it
like this:

Frame frame;
frame.mStartingSampleInclusive = first_sample_in_frame;
frame.mEndingSampleInclusive = last_sample_in_frame;
frame.mDatal = the_data_we_collected;
//frame.mData2 = some_more_data_we_collected;
//frame.mType = OurTypeEnum; //unless we only have one type of frame
frame.mFlags = 0;
if (such_and_such_error == true)

frame.mFlags |= SUCH_AND_SUCH_ERROR_FLAG | DISPLAY_AS_ERROR_FLAG;
if (such_and_such_warning == true)

frame.mFlags |= SUCH_AND_SUCH_WARNING FLAG | DISPLAY_AS WARNING_FLAG;
mResults->AddFrame(frame);
mResults->CommitResults();

ReportProgress(frame.mendingSampleInclusive);

First we make a Frame on the stack. Then we fill in all its values. If there’s a value you don’t need, to
save time you can skip setting it. mFlags should always be set to zero, however, because certan pre-

defined flags will cause the results bubble to indicate a warning or error.

Part of the Frame is expected to be filled in correctly because it’s used automaticly by other systems.
In particular,

] mStartingSamplelnclusive

° mEndingSamplelnclusive

° mFlags

should be filled in properly.

Other parts of the Frame are only there so you can create text descriptions or export the data to a

desired format.

To save a Frame, Use AddFrame from your AnalyzerResults-derived class. Note that frames must be
added in-order, and must not overlap. In other words, you can’t add a Frame from an earlier time

(smaller sample number) after adding a Frame form a later time (larger sample number).

Immediately after adding a Frame, call CommitResults. This makes the Frame accessable to the external

system.

Also call the Analyzer base class ReportProgress. Provide it with it the largest sample number you have

processed.

Adding Markers
Makers are visual elements you can place on the waveform to highlight various waveform features as

they relate to your protocol. For example, in our asynchronous serial analyzer, we place little white dots

44 2020-5-19

http://www.qdkingst.com

Kingst VIS Analyzer SDK www.qgdkingst.com

at the locations where we sample the input’s state. You can also use markers to indicate where the
protocol falls out of specification, a rising or falling clock edge, etc. You specify where to put the marker
(the sample number), which channel to display it on, and which graphical symbol to use.

void AddMarker(U64 sample_number, MarkerType marker_type, Channel &channel);

For example, from SerialAnalyzer.cpp:

mResults->AddMarker(marker_location, AnalyzerResults::Dot, mSettings->mInputChannel);

Currently, the available graphical artifacts are

enum MarkerType { Dot, ErrorDot, Square, ErrorSquare, UpArrow, DownArrow, X, ErrorX,

Start, Stop, One, Zero };

Like Frames, you must add Markers in order.

Markers are strictly for graphical markup, they can not be used to help generate display text, export

files, etc. Only Frames are accessable to do that.

Packets and Trasactions
Packets and Trasactions are only moderatly supported as of now, but they will be becoming more

prominate in the software.

Packets are sequential collections of Frames. Grouping Frames into Packets as you create them is easy:

U64 CommitPacketAndStartNewPacket();
void CancelPacketAndStartNewPacket();

When you add a Frame, it will automatically be added to the current Packet. When you’ve added all the
Frames you want in a Packet, call CommitPacketAndStartNewPacket. In some conditions, especially
errors, you will want start a new packet without committing the old one. For this, call

CancelPacketAndStartNewPacket.

Note that CommitPacketAndStartNewPacket returns an packet id. You can use this id to assign a

particular packet to a transaction.
void AddPacketToTransaction(U64 transaction_id, U64 packet_id);

Currently, Packets are only used when exporting data to text/csv. In the future, analyzer tabular views
will support nesting Frames into Packets, and identifying Transactions (ids) associated with particular
Packets. Generating the textual content to support this is provided in your AnalyzerResults-derived

class.

When using Packet IDs when exporting data to text/csv, use the GetPacketContainingFrameSequential
function, to avoid searching for the packet every time. The GetPacketContainingFrame will do a full

search and be much less efficient.

45 2020-5-19

http://www.qdkingst.com

	I.Setting up an Analyzer Project
	1. General description
	2. Setting up project
	2.1 Windows
	2.2 Linux
	2.3 Mac

	II. Writing your Analyzer’s Code
	1. Analyzer Settings
	1.1{YourName}AnalyzerSettings.h
	1.1.1 User-modifiable settings
	1.1.2 Analyzer Settings Interfaces

	1.2{YourName}AnalyzerSettings.cpp
	1.2.1 The Constructor
	1.2.2 The Destructor
	1.2.3 bool {YourName}AnalyzerSettings::SetSettingsFromI
	1.2.4 {YourName}AnalyzerSettings::UpdateInterfacesFromS
	1.2.5 void {YourName}AnalyzerSettings::LoadSettings(con
	1.2.6 void {YourName}AnalyzerSettings::SaveSettings()

	2. SimulationDataGenerator
	2.1{YourName}SimulationDataGenerator.h
	2.2{YourName}SimulationDataGenerator.cpp
	2.2.1 Constructor / Destructor
	2.2.2 void {YourName}SimulationDataGenerator::Initializ
	2.2.3 U32 {YourName}SimulationDataGenerator::GenerateSi
	2.2.4 Simulating Multiple Channels

	3. AnalyzerResults
	3.1{YourName}AnalyzerResults.h
	3.2{YourName}AnalyzerResults.cpp
	3.2.1 Constructors and analytic functions
	3.2.2 void {YourName}AnalyzerResults::GenerateBubbleTex
	3.2.3 void {YourName}AnalyzerResults::GenerateExportFil
	3.2.4 void {YourName}AnalyzerResults::GenerateFrameTabu
	3.2.5 void {YourName}AnalyzerResults::GeneratePacketTab
	3.2.6 void {YourName}AnalyzerResults::GenerateTransacti

	4. Analyzer
	4.1{YourName}Analyzer.h
	4.2 {YourName}Analyzer.cpp
	4.2.1 Constructor
	4.2.2 Destructor
	4.2.3 void {YourName}Analyzer::SetupResults()
	4.2.4 void {YourName}Analyzer::WorkerThread()
	4.2.5 bool {YourName}Analyzer::NeedsRerun()
	4.2.6 U32 {YourName}Analyzer::GenerateSimulationData(U
	4.2.7 U32 {YourName}SerialAnalyzer::GetMinimumSampleRat
	4.2.8 const char *{YourName}Analyzer::GetAnalyzerName()
	4.2.9 const char *GetAnalyzerName()
	4.2.10 Analyzer *CreateAnalyzer()
	4.2.11 void DestroyAnalyzer(Analyzer *analyzer)
	4.2.12 Details

